1. Implement functions
Determines whether there is a picture with a similarity greater than n within the specified coordinate range, and returns the coordinates.
2. Basic ideas
A=The picture you need to look for
B=Seave the picture in the specified range in the current page
useopencvDetermine the position of A in B,
At this location, take a picture C of the same size as Figure A
Comparison of the similarity between picture C and picture A
Implemented code segments
1. Install the required libraries
pip install opencv-python
pip install pywin32
2. Snap the picture of the specified coordinates
Parameter description
filename:Save file name
hwnd: window handle please find a way to get it
pos:Coordinate position [x1,y1,x2,y2]. x1,y1 is the upper left corner coordinate, x2,y2 refers to the lower right corner coordinate.
This function can return screenshots of programs that are not on the top level.
def window_capture(filename,hwnd=0,pos=None):
hwnd= hwnd # window number, number 0 indicates the current active window
#Get the device context DC of the window based on the window handle (Divice Context)
hwndDC =(hwnd)# Get mfcDC according to the DC of the window
mfcDC =(hwndDC)#mfcDC Create compatible DCs
saveDC =()#Create bigmap to save the picture
saveBitMap =()# Get monitor information
MoniterDev =(None, None)if pos==None:
x1=0
y1=0
w= MoniterDev[0][2][2]
h= MoniterDev[0][2][3]else:
x1=pos[0]
y1=pos[1]
w=pos[2]-pos[0]
h=pos[3]-pos[1]#print w,h#image size
#Make space for bitmap
(mfcDC, MoniterDev[0][2][2], MoniterDev[0][2][3])#Height saveDC, save the screenshot to saveBitmap
(saveBitMap)#Seave the image with length and width from the upper left corner (0, 0) and width (w, h)
((x1, y1), (w, h), mfcDC, (x1, y1), )
(saveDC, filename)
3. Use opencv to determine the position of A in B
Parameter description
target: ("Picture B")
template: ("Picture A")
deffind_picture(target,template):#GettemplateThe height and width of the picture
theight, twidth = [:2]# Perform template matching, using the matching method cv2.TM_SQDIFF_NORMED
result =(target,template,cv2.TM_SQDIFF_NORMED)#Normalization processing
( result, result, 0, 1, cv2.NORM_MINMAX, -1)# Find matrix (one-dimensionalArrayAs a vector, the matching result of the maximum and minimum values in Mat) and its position
min_val, max_val, min_loc, max_loc =(result)# Convert the matching value to a string
#For cv2.TM_SQDIFF and cv2.TM_SQDIFF_NORMED methods, the closer the min_val to match 0, the better the matching position is, the min_loc
#For other methods, max_val approaches 1, the better the matching degree, and the matching position is max_loc
strmin_val =str(min_val)#Draw the rectangle border and mark the matching area
#min_loc: rectangle fixed point
#(min_loc[0]+twidth,min_loc[1]+theight): width and height of the rectangle
#(0,0,225): The border color of the rectangle; 2: The width of the rectangle border
cv2.rectangle(target,min_loc,(min_loc[0]+twidth,min_loc[1]+theight),(0,0,225),2)# Display the result and display the matching value on the title bar
#("MatchResult----MatchingValue="+strmin_val,target)
#()
#()
x=min_loc[0]
y=min_loc[1]return X,Y
4. Return to the specified position of the specified picture.
#target original image#x,y Start coordinate#w,h Return width and length
defget_pic_from_pic(x,y,w,h,target):
region= target[y:y+h,x:x+w]
retrun region
5. Compare the similarity between two pictures
defcompare_picture( imageA, imageB):#Grayscale picture comparison
grayA =(imageA, cv2.COLOR_BGR2GRAY)
grayB=(imageB, cv2.COLOR_BGR2GRAY)
(score, diff)= compare_ssim(grayA, grayB, full=True)return float(score)