web123456

python color search click_Python implements key spell (two) - find pictures and find colors

1. Implement functions

Determines whether there is a picture with a similarity greater than n within the specified coordinate range, and returns the coordinates.

2. Basic ideas

A=The picture you need to look for

B=Seave the picture in the specified range in the current page

useopencvDetermine the position of A in B,

At this location, take a picture C of the same size as Figure A

Comparison of the similarity between picture C and picture A

Implemented code segments

1. Install the required libraries

pip install opencv-python

pip install pywin32

2. Snap the picture of the specified coordinates

Parameter description

filename:Save file name

hwnd: window handle please find a way to get it

pos:Coordinate position [x1,y1,x2,y2]. x1,y1 is the upper left corner coordinate, x2,y2 refers to the lower right corner coordinate.

This function can return screenshots of programs that are not on the top level.

def window_capture(filename,hwnd=0,pos=None):

hwnd= hwnd # window number, number 0 indicates the current active window

#Get the device context DC of the window based on the window handle (Divice Context)

hwndDC =(hwnd)# Get mfcDC according to the DC of the window

mfcDC =(hwndDC)#mfcDC Create compatible DCs

saveDC =()#Create bigmap to save the picture

saveBitMap =()# Get monitor information

MoniterDev =(None, None)if pos==None:

x1=0

y1=0

w= MoniterDev[0][2][2]

h= MoniterDev[0][2][3]else:

x1=pos[0]

y1=pos[1]

w=pos[2]-pos[0]

h=pos[3]-pos[1]#print w,h#image size

#Make space for bitmap

(mfcDC, MoniterDev[0][2][2], MoniterDev[0][2][3])#Height saveDC, save the screenshot to saveBitmap

(saveBitMap)#Seave the image with length and width from the upper left corner (0, 0) and width (w, h)

((x1, y1), (w, h), mfcDC, (x1, y1), )

(saveDC, filename)

3. Use opencv to determine the position of A in B

Parameter description

target: ("Picture B")

template: ("Picture A")

deffind_picture(target,template):#GettemplateThe height and width of the picture

theight, twidth = [:2]# Perform template matching, using the matching method cv2.TM_SQDIFF_NORMED

result =(target,template,cv2.TM_SQDIFF_NORMED)#Normalization processing

( result, result, 0, 1, cv2.NORM_MINMAX, -1)# Find matrix (one-dimensionalArrayAs a vector, the matching result of the maximum and minimum values ​​in Mat) and its position

min_val, max_val, min_loc, max_loc =(result)# Convert the matching value to a string

#For cv2.TM_SQDIFF and cv2.TM_SQDIFF_NORMED methods, the closer the min_val to match 0, the better the matching position is, the min_loc

#For other methods, max_val approaches 1, the better the matching degree, and the matching position is max_loc

strmin_val =str(min_val)#Draw the rectangle border and mark the matching area

#min_loc: rectangle fixed point

#(min_loc[0]+twidth,min_loc[1]+theight): width and height of the rectangle

#(0,0,225): The border color of the rectangle; 2: The width of the rectangle border

cv2.rectangle(target,min_loc,(min_loc[0]+twidth,min_loc[1]+theight),(0,0,225),2)# Display the result and display the matching value on the title bar

#("MatchResult----MatchingValue="+strmin_val,target)

#()

#()

x=min_loc[0]

y=min_loc[1]return X,Y

4. Return to the specified position of the specified picture.

#target original image#x,y Start coordinate#w,h Return width and length

defget_pic_from_pic(x,y,w,h,target):

region= target[y:y+h,x:x+w]

retrun region

5. Compare the similarity between two pictures

defcompare_picture( imageA, imageB):#Grayscale picture comparison

grayA =(imageA, cv2.COLOR_BGR2GRAY)

grayB=(imageB, cv2.COLOR_BGR2GRAY)

(score, diff)= compare_ssim(grayA, grayB, full=True)return float(score)