web123456

Cryptography ElGamal Digital Signature Key Generation Digital Signature Verification Python Implementation

import random def gcd(a: int, b: int): """Euclidean algorithm finds the greatest common divisor"""" while a != 0: a, b = b % a, a return b def euler(n): """Euler function""" # If n is a prime number, return directly to n-1 if (n, 1) == 1: return n - 1 m = 0 for i in range(n): if gcd(i, n) == 1: m += 1 return m def getFirstPrimitiveRoot(p): """ Calculate the first original root""" # Get the Euler function value m euler_n = euler(p) #Double loop for a in range(2, p): for m in range(2, p): # The first m satisfies a^m = 1 mod p At the same time m = euler_n, then a is the first original root if pow(a, m, p) == 1: # If the smallest positive power a is not an Euler function, the next cycle will be performed if m == euler_n: return a else: break return False def getAllPrimitiveRoot(p, first): primitiveRoot = [] for i in range(p): # If i and p are mutually exclusive, i is a simplified remaining member of p-1 if gcd(i, p - 1) == 1: # Add original root to the list primitiveRoot.append(pow(first, i, p)) return primitiveRoot if __name__ == '__main__': p = 41 firstp = getFirstPrimitiveRoot(p) pR = getAllPrimitiveRoot(p, firstp) print(pR) # Randomly select a native root g g = pR[random.randint(0, len(pR) - 1)] # Generate a random x x = random.randint(1, p - 2) # Calculate y = g^x mod p y = pow(g, x, p) print(f"Expose (p,g,y):{(p, g, y)}") print(f"Secretly save x:{x}")