//Collect information from Copernicus and filter it according to different aspects
var collection = ee.ImageCollection('COPERNICUS/S1_GRD')
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
.filter(ee.Filter.eq('instrumentMode', 'IW'))
.filter(ee.Filter.or(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'),
ee.Filter.eq('orbitProperties_pass', 'ASCENDING')
));
//Filter according to different dates before and after the flood period. We used 2021 data
var before = collection
.filter(ee.Filter.date('2021-03-01', '2021-03-20'))
.filterBounds(square);
var after = collection
.filter(ee.Filter.date('2021-05-01', '2021-05-20'))
.filterBounds(square);
//print the collection
print(before);
print(after);
//Mosaic the collected content and cut it to the area of interest. In this case, "square" is the area of interest
var before_image = before.select('VH').mosaic().clip(square);
var after_image = after.select('VH').mosaic().clip(square);
//function
function toNatural(img){
//"""Function to convert from dB"""
return ee.Image(10.0).pow(img.select(0).divide(10.0))
}
function toDB(img){
//"""Function to convert to dB"""
return ee.Image(img).log10().multiply(10.0)
}
function RefinedLee(img) {
// """The RL speckle filter
// img must be in natural units, . not in dB!
// Set up 3x3 kernels"""
var bandNames = img.bandNames();
var img = toNatural(img);
var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
//# Use a sample of the 3x3 windows inside a 7x7 windows to determine gradients and directions
var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0], [0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);
var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
//# Calculate mean and variance for the sampled windows and store as 9 bands
var sample_mean = mean3.neighborhoodToBands(sample_kernel);
var sample_var = variance3.neighborhoodToBands(sample_kernel);
//# Determine the 4 gradients for the sampled windows
var gradients = sample_mean.select(1).subtract(sample_mean.select(7)).abs();
var gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean.select(2)).abs());
var gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean.select(5)).abs());
var gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean.select(8)).abs());
//# And find the maximum gradient amongst gradient bands
var max_gradient = gradients.reduce(ee.Reducer.max());
//# Create a mask for band pixels that are the maximum gradient
var gradmask = gradients.eq(max_gradient);
//# duplicate gradmask bands: each gradient represents 2 directions
var gradmask = gradmask.addBands(gradmask);
//# Determine the 8 directions
var directions = sample_mean.select(1).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);
directions = directions.addBands(sample_mean.select(6).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(2))).multiply(2));
directions = directions.addBands(sample_mean.select(3).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(5))).multiply(3));
directions = directions.addBands(sample_mean.select(0).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(8))).multiply(4));
// The next 4 are the not() of the previous 4
directions = directions.addBands(directions.select(0).not().multiply(5));
directions = directions.addBands(directions.select(1).not().multiply(6));
directions = directions.addBands(directions.select(2).not().multiply(7));
directions = directions.addBands(directions.select(3).not().multiply(8));
//# Mask all values that are not 1-8
var directions = directions.updateMask(gradmask);
//# "collapse" the stack into a singe band image (due to masking, each pixel has just one value (1-8) in it's directional band, and is otherwise masked)
var directions = directions.reduce(ee.Reducer.sum());
//#pal = ['ffffff','ff0000','ffff00', '00ff00', '00ffff', '0000ff', 'ff00ff', '000000']
//#((()), {min:1, max:8, palette: pal}, 'Directions', False)
var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
//# Calculate localNoiseVariance
var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5).arrayReduce(ee.Reducer.mean(), [0]);
//# Set up the 7*7 kernels for directional statistics
var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List.repeat(ee.List.repeat(1,7),4));
var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,0,0,0,0],
[1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0], [1,1,1,1,1,1,1]]);
var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
//# Create stacks for mean and variance using the original kernels. Mask with relevant direction.
var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel).updateMask(directions.eq(1));
var dir_var = img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel).updateMask(directions.eq(1));
var dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel).updateMask(directions.eq(2)));
var dir_var= dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel).updateMask(directions.eq(2)));
//# and add the bands for rotated kernels
for (var i=1; i<4; i++) {
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
}
//# "collapse" the stack into a single band image (due to masking, each pixel has just one value in it's directional band, and is otherwise masked)
dir_mean = dir_mean.reduce(ee.Reducer.sum());
dir_var = dir_var.reduce(ee.Reducer.sum());
//# A finally generate the filtered value
var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)).divide(sigmaV.add(1.0));
var b = varX.divide(dir_var)
var result = dir_mean.add(b.multiply(img.subtract(dir_mean))).arrayFlatten([['sum']]).float();
return ee.Image(toDB(result)).rename(bandNames).copyProperties(img)
}
//Convert the new mosaic to natural color, apply fine plum spot filtering, and then convert back to db
var before_filtered = ee.Image(toDB(RefinedLee(toNatural(before_image))));
var after_filtered = ee.Image(toDB(RefinedLee(toNatural(after_image))));
//The threshold value (pixel) depends on the region of interest
var flood = before_filtered.gt(-20).and(after_filtered.lt(-20));
//Show value equal to 1 as flood
var flood_mask = flood.updateMask(flood.eq(1));
//This kind of water mask is used to distinguish between water and flooded areas
var water = before_filtered.lt(-20).and(after_filtered.lt(-20));
var water_mask = water.updateMask(water.eq(1));
//Open the center of the map at the area of interest
Map.centerObject(square);
//Load different layers
Map.addLayer(before_filtered, { min: -25, max: 0 }, 'Before_Filt');
Map.addLayer(after_filtered, { min: -25, max: 0 }, 'After_Filt');
Map.addLayer(flood_mask, { palette: ['Yellow'] }, 'Flood_Inundation');
Map.addLayer(water_mask, { palette: ['Blue'] }, 'Water');
//Calculate the area and flooded area and print it on the screen
var stats = flood_mask.multiply(ee.Image.pixelArea()).reduceRegion({
reducer: ee.Reducer.sum(),
geometry: square,
scale: 10,
maxPixels: 1e13,
tileScale: 16
});
print(stats)
var flood_area = ee.Number(stats.get('constant')).divide(10000).round();
print('Flooded Area (Ha)', flood_area);