web123456

Google Earth Engine - Long-term mean loading using Sentinel-1 data (db value)

  • // Import Sentinel No. 1 data
  • var S1 = ee.ImageCollection('COPERNICUS/S1_GRD')
  • .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
  • .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
  • .filter(ee.Filter.eq('instrumentMode', 'IW'))
  • .filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))
  • .filterBounds(roi)
  • .filterDate('2014-01-01','2023-12-31')
  • .select(["VV","VH"])
  • //Convert to DB value
  • function toNatural(img) {
  • return ee.Image(10.0).pow(img.select(0).divide(10.0));
  • }
  • //Function to convert to dB
  • function toDB(img) {
  • return ee.Image(img).log10().multiply(10.0);
  • }
  • //Apply SNAP 3.0 S1TBX encoded refined Li's spot filter:
  • ///senbox-org/s1tbx/blob/master/s1tbx-op-sar-processing/src/main/java/org/esa/s1tbx/sar/gpf/filtering/SpeckleFilters/
  • //Adapted from Guido Lemoine
  • function RefinedLee(img) {
  • // img must use natural units, i.e. not dB! Setting up the 3x3 kernel
  • // Convert to natural unit!
  • var myimg = toNatural(img);
  • var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
  • var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
  • var mean3 = myimg.reduceNeighborhood(ee.Reducer.mean(), kernel3);
  • var variance3 = myimg.reduceNeighborhood(ee.Reducer.variance(), kernel3);
  • // Use 3x3 window samples in 7x7 windows to determine gradients and orientations
  • var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0], [0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);
  • var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
  • // Calculate the average value and variance of the sampling window and store it as 9 bands
  • var sample_mean = mean3.neighborhoodToBands(sample_kernel);
  • var sample_var = variance3.neighborhoodToBands(sample_kernel);
  • // Determine the 4 gradients of the sampling window
  • var gradients = sample_mean.select(1).subtract(sample_mean.select(7)).abs();
  • gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean.select(2)).abs());
  • gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean.select(5)).abs());
  • gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean.select(8)).abs());
  • // Find the maximum gradient in the gradient band
  • var max_gradient = gradients.reduce(ee.Reducer.max());
  • // Create mask for striped pixels of maximum gradient
  • var gradmask = gradients.eq(max_gradient);
  • // Repeated gradient mask band: Each gradient represents 2 directions
  • gradmask = gradmask.addBands(gradmask);
  • // Determine 8 directions
  • var directions = sample_mean.select(1).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);
  • directions = directions.addBands(sample_mean.select(6).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(2))).multiply(2));
  • directions = directions.addBands(sample_mean.select(3).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(5))).multiply(3));
  • directions = directions.addBands(sample_mean.select(0).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(8))).multiply(4));
  • // The next 4 are the not() of the previous 4
  • directions = directions.addBands(directions.select(0).not().multiply(5));
  • directions = directions.addBands(directions.select(1).not().multiply(6));
  • directions = directions.addBands(directions.select(2).not().multiply(7));
  • directions = directions.addBands(directions.select(3).not().multiply(8));
  • // Block all values ​​not 1-8
  • directions = directions.updateMask(gradmask);
  • // "fold" the stack into a single band image (due to masking, each pixel has only one value (1-8) in its direction band, otherwise it will be blocked).
  • directions = directions.reduce(ee.Reducer.sum());
  • var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
  • // Calculate local noise variance
  • var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5).arrayReduce(ee.Reducer.mean(), [0]);
  • // Set 7*7 kernel for directional statistics
  • var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List.repeat(ee.List.repeat(1,7),4));
  • var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,0,0,0,0],
  • [1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0], [1,1,1,1,1,1,1]]);
  • var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
  • var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
  • // Create mean and variance stacks using the original kernel. Block the relevant directions.
  • var dir_mean = myimg.reduceNeighborhood(ee.Reducer.mean(), rect_kernel).updateMask(directions.eq(1));
  • var dir_var = myimg.reduceNeighborhood(ee.Reducer.variance(), rect_kernel).updateMask(directions.eq(1));
  • dir_mean = dir_mean.addBands(myimg.reduceNeighborhood(ee.Reducer.mean(), diag_kernel).updateMask(directions.eq(2)));
  • dir_var = dir_var.addBands(myimg.reduceNeighborhood(ee.Reducer.variance(), diag_kernel).updateMask(directions.eq(2)));
  • // and add bands to the rotating kernel
  • for (var i=1; i<4; i++) {
  • dir_mean = dir_mean.addBands(myimg.reduceNeighborhood(ee.Reducer.mean(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
  • dir_var = dir_var.addBands(myimg.reduceNeighborhood(ee.Reducer.variance(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
  • dir_mean = dir_mean.addBands(myimg.reduceNeighborhood(ee.Reducer.mean(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
  • dir_var = dir_var.addBands(myimg.reduceNeighborhood(ee.Reducer.variance(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
  • }
  • // "fold" the stack into a single band image (due to masking, each pixel has only one value in its direction band, otherwise it will be blocked).
  • dir_mean = dir_mean.reduce(ee.Reducer.sum());
  • dir_var = dir_var.reduce(ee.Reducer.sum());
  • // A Finally generates filtered value
  • var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)).divide(sigmaV.add(1.0));
  • var b = varX.divide(dir_var);
  • var result = dir_mean.add(b.multiply(myimg.subtract(dir_mean)));
  • //return(result);
  • return(img.addBands(ee.Image(toDB(result.arrayGet(0))).rename("filter")));
  • }
  • var collection = S1.map(RefinedLee);
  • var col = ee.ImageCollection(collection.select("filter"));
  • print(ui.Chart.image.series(col, roi, ee.Reducer.mean(), 20).setOptions({
  • title: 'TimeSeries analysis',
  • lineWidth: 1,
  • pointSize: 3 }));