private void evolution() {
for (int t = 0; t < MAX_GEN; t++) {
for (int k = 0; k < scale; k++) {
ArrayList<SO> vii = new ArrayList<>();
//Part 1: Inertial retention part, self-exchange pair
int len = (int) (w * listV.get(k).size());
for (int i = 0; i < len; i++) {
vii.add(listV.get(k).get(i));
}
//Part 2: The self-cognitive part, which compares the best results in the current particle, and obtains the exchange sequence
//ra(Pid-Xid)
ArrayList<SO> a = minus(mUnits.get(k).getPath(), Pd.get(k).getPath());
float ra = random.nextFloat();
len = (int) (ra * a.size());
for (int i = 0; i < len; i++) {
vii.add(a.get(i));
}
//Part 3: Comparing the social cognitive part with the global optimal result, we obtain the exchange sequence
//rb(Pgd-Xid)
ArrayList<SO> b = minus(mUnits.get(k).getPath(), ());
float rb = random.nextFloat();
len = (int) (rb * b.size());
for (int i = 0; i < len; i++) {
vii.add(b.get(i));
}
(0);
listV.add(vii);
//Perform exchange to generate the next particle
exchange(mUnits.get(k).getPath(), vii);
}
//Update the value of fitness
for (int i = 0; i < scale; i++) {
mUnits.get(i).upDateFitness();
if (Pd.get(i).getFitness() > mUnits.get(i).getFitness()) {
(i, mUnits.get(i));
}
if (() > Pd.get(i).getFitness()) {
Pgd = Pd.get(i);
bestT = t;
}
}
}
}