Torch's Tensor conversion toNumPyArray
Tensor and NumPy arrays share the same underlying storage location, so when one changes, the other changes too.
Create a tensor
First import torch and numpy packages
import torch
import numpy as np
- 1
- 2
Create a tensor
a = torch.zeros(5)
print(a)
- 1
- 2
Output result:
tensor([0., 0., 0., 0., 0.])
- 1
Convert tensor to numpy
b = a.numpy()
print(b)
- 1
- 2
Output result:
[0. 0. 0. 0. 0.]
- 1
When the converted tensor changes, the numpy array will also change.
a.add_(1)
print(a)
print(b)
- 1
- 2
- 3
Output result:
tensor([1., 1., 1., 1., 1.])
[1. 1. 1. 1. 1.]
- 1
- 2
- 3
Convert NumPy array to Tensor
Create a numpy array
a = np.zeros(5)
print(a)
- 1
- 2
Output result:
[0. 0. 0. 0. 0.]
- 1
Convert numpy array to tensor
b = torch.from_numpy(a)
print(b)
- 1
- 2
Output result:
tensor([0., 0., 0., 0., 0.], dtype=torch.float64)
- 1
When the converted numpy array develops and changes, the converted tensor will also change.
np.add(a, 2,out=a)
print(a)
print(b)
- 1
- 2
- 3
Output result:
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
- 1
- 2
All tensors on the CPU (except CharTensor) support mutual conversion with Numpy arrays.
CUDATensor on
Tensors can be moved to any device using the .to() method:
Prerequisite GPU is available and usedTo move tensor into and out of GPU
Create a tensor
x = torch.rand(2,3)
y = torch.rand_like(x)
print(x)
print(y)
- 1
- 2
- 3
- 4
Output result:
tensor([[0.7374, 0.2935, 0.4500],
[0.9148, 0.7752, 0.5846]])
tensor([[0.0828, 0.5807, 0.8807],
[0.9329, 0.8767, 0.0201]])
- 1
- 2
- 3
- 4
Put the tensor into the GPU for acceleration:
x = x.to('cuda')
print(x)
- 1
- 2
Output result:
tensor([[0.7374, 0.2935, 0.4500],
[0.9148, 0.7752, 0.5846]], device='cuda:0')
- 1
- 2
We have put x into the GPU, and y is still in the CPU. If the operation between x and y is performed at this time, an error will be reported as follows:
z = x + y
- 1
Output result:
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 andcpu!
Translation: RuntimeError:Expect all tensors on the same device, but find at least two devices, cuda:0and cpu!
- 1
- 2
Therefore, we can only operate and process the data on the same device.
Put x in the GPU into the CPU, and x and y in the same device can be added together.
x = x.to('cpu')
print(x)
z = x +y
print(z)
- 1
- 2
- 3
- 4
Output result:
tensor([[0.7374, 0.2935, 0.4500],
[0.9148, 0.7752, 0.5846]])
tensor([[0.8202, 0.8742, 1.3308],
[1.8477, 1.6520, 0.6047]])
- 1
- 2
- 3
- 4