Article Directory
- 0. Preface
- 1. Syntax
- 1.1 Parameter description
- 1.2 Return value
- 2. Example
python functionsSeries Directory:python functions--Catalog
0. Preface
For simplicity of implementation, keras can only accept sequence inputs of the same length. Therefore, if the current sequence length is uneven, you need to use pad_sequences(). This function converts a sequence into a new sequence of the same length after filling.
1. Syntax
The official syntax is as follows1:
Code.1.1 pad_sequences syntax
keras.preprocessing.sequence.pad_sequences(sequences,
maxlen=None,
dtype='int32',
padding='pre',
truncating='pre',
value=0.)
1.1 Parameter description
-
sequences
: Two-layer nested list of floating point numbers or integers -
maxlen
: None or integer, the maximum length of the sequence. Sequences larger than this length will be truncated, and sequences smaller than this length will be filled in 0 at the back. -
dtype
: The data type of the returned numpy array -
padding
: ‘pre’ or ‘post’, determine whether to make up for 0 at the beginning or end of the sequence. -
truncating
: ‘pre’ or ‘post’, determines whether the sequence needs to be truncated from the beginning or the end -
value
: Float, this value will replace the default padding value 0 in the fill era
1.2 Return value
Returns a 2-dimensional tensor with lengthmaxlen
2. Example
Code.2.1 Simple Example
>>>list_1 = [[2,3,4]]
>>>keras.preprocessing.sequence.pad_sequences(list_1, maxlen=10)
array([[0, 0, 0, 0, 0, 0, 0, 2, 3, 4]], dtype=int32)
>>>list_2 = [[1,2,3,4,5]]
>>>keras.preprocessing.sequence.pad_sequences(list_2, maxlen=10)
array([[0, 0, 0, 0, 0, 1, 2, 3, 4, 5]], dtype=int32)
In natural language, it is generally used with word participle, and it is also mentioned in word participle notes.pad_sequences
Use effect, see the original textpython function - Keras word participle Tokenizer
Code.2.2 Common Examples
>>>tokenizer.texts_to_sequences(["It rains, I work overtime"])
[[4, 5, 6, 7]]
>>>keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequences(["It rains, I work overtime"]), maxlen=20)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 7]],dtype=int32)
-
/en/latest/preprocessing/sequence/ ↩︎